Bruce's Blog Just another in the neverending world of blogs

22Jul/150

Indigo Plugin for Haiku Fans with SenseME v 0.3

Version 0.3 of the Indigo plugin is now available.  This version mostly improves the internal handling of events from the fan, and also adds both state and address information to the Devices display in the Indigo GUI.

Download the plugin here.

If you have any questions, comments, suggestions, etc. please post them to the Indigo plugin forum.

17Jul/150

Indigo Plugin for Haiku Fans with SenseME v 0.1

The Indigo Plugin for Haiku Fans with SenseME provides the ability to remotely control fans from Big Ass Solutions from within Indigo software. Currently the plugin is limited to support the following functionality:

  • Turn the fan on/off and adjust the fan speed
  • Turn the optional light, if installed, on/off and adjust its brightness
  • Turn the fan motion sensor on/off
  • Turn the light motion sensor on/off
  • Trigger actions based on changes to any of the above states

Disclaimer: The API for SenseME is not published by Big Ass Solutions, and this plugin is in no way supported by them.  This plugin was written by analyzing the network traffic between the SenseME iPhone app and a Haiku fan with SenseME. There is no guarantee that this plugin will continue to work if Big Ass Solutions releases new firmware/software for the fan.

To use this plug-in simply download this ZIP file and uncompress it, then double-click on the SenseME.indigoPlugin file to install it in Indigo.  Once installed, simply create a new Indigo "SenseME Fan" device.  In the device settings, enter the name of the fan and its IP address, both of which can be found in the SenseME smartphone app.

Once the SenseME Fan device is created simply create actions or triggers as you would for any other Indigo device.

If you are interested in learning more about the SenseME API for communicating with the fan then see this post. The source code for the plugin is also hosted on github.

 

17Jul/150

Hacking Big Ass fans with SenseME to control them remotely

Big Ass Solutions (I love that name) has an advanced ceiling fan called Haiku that includes an optional wifi-enabled component called SenseME, which is designed to be controlled by a smartphone app. Big Ass Solutions does not currently make an API available for SenseME, which is very unfortunate for folks who would like to incorporate their fans into third party home automation systems.

DISCLAIMER: What follows is information that I gleaned solely by analyzing the network traffic between the SenseME app and a Haiku fan.  None of this information is provided or supported by Big Ass Solutions, and it may change at any moment if Big Ass Solutions decides to do so. Use this information solely at your own risk. I make no guarantees whatsoever as to the current accuracy of this information. I also make no guarantees that by using this information you won't irreparably damage your Haiku fan (bricking the SenseME, etc).

Fortunately, they use a relatively simple protocol for controlling the fans. To figure out exactly how the smartphone app and the fan communicate with one another I simply ran wireshark or tcpdump to trace network traffic to/from my iPhone. Fortunately Apple makes it fairly easy to capture packet traces of iPhones by creating a remote virtual interface (RVI) on a Mac.  All it requires is XCode, which you can download from the Mac App Store.  I won't go into details of setting up an RVI since Apple provides fairly easy instructions on how to do it.

By tracing the network activity of the SenseME app I was able to quickly determine that the app and the fan communicate via UDP on port 31415, and the commands are all in a fairly simple plaintext format.  A command sent from the app to the fan is just a text string that looks like this:

<ALL;DEVICE;ID;GET>

Responses sent from the fan back to the app are in a similar format, but uses parenthesis instead:

(Living Room;LIGHT;PWR;ON)

The number & meaning of each parameter in the command or response varies depending on the command/response.

When the smartphone app starts up it broadcasts a <ALL;DEVICE;ID;GET> message on UDP port 31415 so that all the fans on the same network can receive it.  The fans, in response, send a series of responses back as a number of parenthesis-delimited strings to the IP address that issued the request.  In this way the smartphone app gets a snapshot of the entire current state of the fan.

When the SenseME app sends a command to a specific fan then the first parameter in the message is typically the MAC address of the fan.  It appears that the fan will also respond if the first parameter is the name of the fan, so the following two commands should effectively be identical, assuming "Living Room" is the name given to the fan with the MAC address 20:F8:5E:AB:31:1B:

<20:F8:5E:AB:31:1B;FAN;SPD;GET;ACTUAL>
<Living Room;FAN;SPD;GET;ACTUAL>

The fan will send some status messages via UDP broadcast so that all devices on the network that are listening on port 31415 can get updates. This way if you happen to have two or more smartphones all running the SenseME app and one of them changes the speed of the fan then all the apps are notified of the new fan speed.

Here are a few of the more basic commands that I've made use of in my testing/analysis of the fan.  Remember that the SenseME app sends commands enclosed in <> and the response(s) from the fan are enclosed in ().  I've also colored the commands in blue and the responses in red:

Set fan speed to 3:

Command from app: <Living Room;FAN;SPD;SET;3>
Responses from fan:
(Living Room;FAN;SPD;ACTUAL;3)
(Living Room;FAN;PWR;ON)
(Living Room;FAN;SPD;CURR;3)

Turn the fan off:

Command from app: <Living Room;LIGHT;PWR;OFF>
Responses from fan:
(Living Room;LIGHT;LEVEL;SCALE;0)
(Living Room;LIGHT;LEVEL;ACTUAL;0)
(Living Room;LIGHT;PWR;OFF)
(Living Room;LIGHT;LEVEL;CURR;0)
(Living Room;LIGHT;PWR;OFF)
(Living Room;LIGHT;LEVEL;CURR;0)

Turn the fans motion detector on:

Command from app: <Living Room;FAN;AUTO;ON>
Responses from fan:
(Living Room;FAN;AUTO;ON)
If the motion detector senses motion then this may be immediately followed by:
(Living Room;FAN;PWR;ON)
(Living Room;FAN;SPD;CURR;3) 
(Living Room;FAN;AUTO;ON)

As you can see from the above examples it's not uncommon to receive multiple responses from a single command sent to the fan. In some cases it's also possible to see the exact same response twice, like receiving "LIGHT;LEVEL;CURR;0" when the light is turned off.

I'm currently only interested in basic functionality like turning the fan on/off, adjusting the speed, and turning features like the motion sensor on/off so I haven't delved into a lot of these responses.  There are some responses like "(Living Room;LIGHT;LEVEL;SCALE;16383)" that I haven't bothered to try to understand, or why you might receive both a "FAN;SPEED;CURR" and "FAN;SPEED;ACTUAL" when they seem to always appear together and provide the same data.

This should provide enough of a basic primer for how to interact with Haiku Fans that have the SenseME option installed.  Good luck!

 

Tagged as: , No Comments
30Dec/140

pdmaint

We use PagerDuty where I work at Care.com to manage on-call notifications, escalations, etc. It's a great tool to manage alerts from tools and services like Nagios, New Relic, and dozens of others. They also provide a handy dandy REST API, and it should be no surprise that somebody then wrote a Python module to encapsulate it (thanks DropBox!).  Thanks to that I wrote a handy-dandy command line tool called pdmaint for my company to schedule maintenance windows in PagerDuty. Since we've found it incredibly useful I was able to get the powers-that-be to let us open source it.  So you can find pdmaint over at Github if you're interested.  There's a full set of documentation there as well.

24Jun/140

IMAPrunner

Here's a handy little IMAP utility people may find useful. IMAPrunner was an excuse for me to learn a little more about Python programming and to also throw together something useful at the same time.  It's a Python script that lets you associate scripts/commands with mail messages in individual mail folders.

I now have a cron job set up that checks for any e-mails I add to a "spam" folder.  If I receive any spam I just move it to that folder.  IMAPrunner will then pass the spam e-mail onto SpamAssassin, razor, pyzor, etc. and then delete the e-mail automatically. There's really no limit to what you can trigger in response to an e-mail with it.  And I already have a few thoughts for improvements to it...